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An approach is outlined for X-ray structure refinement using atomic density

fragments obtained by Hirshfeld partitioning of quantum-mechanical density

fragments. Results are presented for crystal structure refinements of urea and

benzene using these ‘Hirshfeld atoms’. Using this procedure, the quantum-

mechanical non-spherical electron density is taken into account in the structural

model based on the conformation found in the crystal. Contrary to current

consensus in structure refinement, the anisotropic displacement parameters of H

atoms can be reproduced from neutron diffraction measurements simply from a

least-squares fit using the Hirshfeld atoms derived from the BLYP level of

theory and including a simple point-charge model to treat the crystal

environment.

1. Introduction

In most cases, a crystal structure – by which we mean the

atomic positions and atomic displacement parameters (ADPs)

– is obtained from X-ray diffraction experiments using the

promolecule model. This model approximates the electron

density (ED) in the crystal as a sum of spherically symmetric

atomic density functions (ADFs) obtained from quantum-

mechanical (QM) calculations. However, it is well known that

asphericity in the atomic density can be detected. For example,

for typical small organic molecules, at least half of the

measured reflections will show changes greater than 1% due

to deficiencies in the promolecule approximation, and changes

of up to 20% are often observed (Bytheway et al., 2007).

Accordingly, in X-ray charge-density refinement, one attempts

to model the asphericities and obtains an improved descrip-

tion of the crystal structure. In charge-density refinement, the

ED in the crystal is approximated as a sum of ADFs which are

allowed to be aspherical, the asphericity being described by

multipole expansion parameters. The aspherical ADFs

modelled in this way have been called pseudoatoms (Stewart,

1976), and the treatment of high-resolution X-ray single-

crystal diffraction data using the pseudoatom formalism is

most often carried out using the Hansen–Coppens variant of

the multipole model (Hansen & Coppens, 1978). It is a mature

technique in charge-density refinement (Coppens, 2005).

In this paper, an alternative approach to X-ray crystal

structure refinement is considered. Instead of modelling the

experimental data using the promolecule model or the

pseudoatom model, we propose to obtain aspherical ADFs

from a better QM model. Specifically, we propose to obtain

the aspherical ADFs by Hirshfeld’s stockholder partitioning

(Hirshfeld, 1977) of an electron density obtained from QM

calculations. For convenience, we henceforth call such

aspherical ADFs ‘Hirshfeld atoms’ (HAs).

The idea to use HAs is not without precedent: Bruning &

Feil (1992) and Koritsánszky & Volkov (2004) have also used

them. However, in the former case the method was used to

calculate thermally averaged structure factors while in the

latter case the authors used the further approximation of

representing the HAs within the pseudoatom formalism

(Koritsánszky & Volkov, 2004). By contrast, in this work, we

propose to use the HAs directly without further approxima-

tion. Since our interests are with molecular crystals, we obtain

the HAs from isolated-molecule QM calculations, assuming

that these HAs are representative of an atomic fragment of

the ED in the crystal. As far as we are aware, no-one has yet

used such atoms in a crystal structure refinement against X-ray

data.

There are several motivations for the work described here,

which are now discussed.

One motivation is to see what the differences in the refined

structure parameters are, compared with established charge-

density refinement techniques and compared with results from

neutron diffraction experiments. A second motivation is to see

if H-atom positions and ADPs can be obtained using this new

model. To obtain accurate H-atom positions from X-ray

diffraction data is an almost historical problem which Stewart

& Bentley (1975) suggested could be solved by introducing a

finite multipole expansion of the charge density for the H

atom taken from the same atom in the H2 molecule. Such an

idea has been applied by, for example, Destro & Merati



(1995). However, while obtaining H-atom positions is possible,

obtaining the corresponding ADPs is much more difficult

unless additional assumptions and measurements are used.

For example, Madsen et al. (2004) have obtained the ADPs for

H atoms in good agreement with those from neutron diffrac-

tion experiments by using a model which itself uses the

neutron ADPs from a variety of related structures. On the

other hand, one can avoid this somewhat tautological

approach if some of the ADP information is obtained from

QM vibrational calculations (Whitten & Spackman, 2006). By

contrast with these conceptually complicated approaches, in

this paper the H-atom ADP information is obtained only from

the X-ray data using an improved electron-density model.

In the proposal we have outlined, a QM calculation is

required after a preliminary X-ray structure refinement. This

QM calculation will be time consuming at best and impractical

at worst. However, if it were possible to derive transferable

atomic density fragments (TADs), then the scheme we have

outlined could be applied in a practical way. By ‘transferable’,

we mean that the same aspherical ADF is used for atoms

which are in the same chemical environment (after a suitable

alignment procedure). Jelsch, Volkov and Dittrich, and their

co-workers, have independently developed different schemes

for TADs, using the pseudoatom formalism to represent the

ADFs (Pichon-Pesme et al., 1995; Volkov et al., 2004; Dittrich

et al., 2004, 2006; Zarychta et al., 2007; Dominiak et al., 2007).

In the case of Dittrich and co-workers, and Volkov and co-

workers, theoretical calculations were used to obtain the

TADs, which have been termed invarioms or pseudoatom

database parameters, respectively.

In view of the work just described, a third motivation for the

work described here is to facilitate developing quantum-

mechanical TADs. Such a development would (a) eliminate

the problems of trying to represent the electron density using

only a limited number of atomic functions, as is done in the

pseudoatom formalism, and (b) also eliminate the need for an

expensive QM calculation before a structure refinement. We

will pursue the development of QM invarioms in future work.

In Fig. 1, we have tried to give an overview of the different

structure refinement models currently in use and their rela-

tionship to each other.

Even though the Hirshfeld-atom model we propose is better

than the promolecule model, such HAs will (by definition) not

include the effects of intermolecular interactions. The

adequacy of the isolated-molecule model depends entirely on

whether the interaction density is observable in the measured

structure factors. Should such intermolecular interaction

effects be important, the structural parameters obtained from

the approach we have outlined would serve as a good starting

point for X-ray constrained Hartree–Fock (XCHF) modelling

(Jayatilaka, 1998; Grimwood & Jayatilaka, 2001; Grimwood et

al., 2003). A previous study on oxalic acid, for example,

suggested that an inability to obtain a good �2 agreement

statistic when using the XCHF model was due to small errors

in positional and ADP parameters (Grimwood & Jayatilaka,

2001).

A fourth motivation for this paper is, therefore, a desire to

obtain more accurate structural parameters for the XCHF

model, with the ultimate aim of obtaining an improved

description of the interaction density, the effect of the

surrounding molecules in the crystal on the electron density of

the isolated molecule [for a definition of the interaction

density see e.g. Spackman et al. (1999)]. The interaction

density contributes to the electrostatic part of the inter-

molecular interaction energy, and hence to the binding energy

of the crystal, an important physical quantity.

The outline of the paper is as follows. In the following

section, we present the necessary theory for refining X-ray

structures using Hirshfeld-partitioned ADFs obtained from

QM calculations on isolated-molecule molecular densities.

Subsequently, we apply and test our method on crystal

structures of urea and benzene.
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Figure 1
Overview of structure refinement models.



2. Theory and details of implementation

In this section, we present a brief exposition of structure

refinement based on HAs. The key concepts and steps

involved are outlined below, including some comments on

details of efficient implementation and other approximations

used, notably the rigid-Hirshfeld-atom approximation. The

new method is introduced with a comparison to the standard

multipole model.

2.1. Multipole model versus quantum-chemical electron-
density expressions

In the multipole model, the electron density �ðrÞ is

described by an analytical expression based on the sum of

rigid atom-centered multipole functions in terms of multipole

parameters �, �0;Pv and Plm,

�atomðrÞ ¼ �coreðrÞ þ Pv�
3�vð�rÞ þ �deformationðrÞ; with

�deformationðrÞ ¼
Plmax

l¼0

�03Rlð�
0rÞ
Pl

m¼0

Plm� dlm� ð�; �Þ:

ð1Þ

The multipole parameters can be refined by least-squares

methods using experimental data or predicted by theory via

simulated structure factors (Koritsanszky et al., 2002). Core

and spherical valence densities (�v) of the heavy atoms are

composed of Hartree–Fock wavefunctions expanded over

Slater-type basis functions. For the deformation terms, single-�
orbitals with energy-optimized Slater exponents are employed

and kept fixed (Clementi & Roetti, 1974).

By contrast with the atom-centered model employed in the

multipole model, in quantum mechanics a two-center elec-

tron-density description is used, and the basic unit is not the

atom but a molecule. Usually the �molecule is

�moleculeðrÞ ¼
P
A;B

P
i;j

DAB
ij fiðrÞfjðrÞ: ð2Þ

Here DAB
ij is the density matrix (typically obtained in a

quantum-chemical calculation) and fi; fj are the basis functions

centered on the atoms A and B, respectively. These basis

functions are typically linear combinations of several Gaussian

functions and are therefore much more flexible than those

used in the multipole representation. An important difference

between equation (2) and equation (1) is that the latter

requires two atomic centers A, B. While this allows the

calculation of quantities such as the kinetic energy, which is

not possible using the pseudoatom formalism, the use of

equation (2) does cause difficulties when calculating thermally

averaged structure factors which require an atom-centered

formalism. The Hirshfeld-atom scheme proposed in this work

circumvents this problem.

2.2. Hirshfeld atoms

Assume that the crystal is composed of a single molecule or

molecular fragment whose electron density is �moleculeðrÞ. Now

assume that �moleculeðrÞ can be approximated by an isolated-

molecule QM calculation, such as given in equation (2). The

choice of this molecule is not unique, and different choices

may be better or worse (Jayatilaka & Grimwood, 2001;

Grimwood & Jayatilaka, 2001). To build up �cellðrÞ, the elec-

tron density in the unit cell, our strategy is to carve up the

molecular density �moleculeðrÞ into aspherical atomic density

functions which can be copied by symmetry operations to the

appropriate positions in the unit cell. To do this, we will use the

Hirshfeld partitioning technique.

Hirshfeld has defined the density of an atom at its position

rA in a molecule by (Hirshfeld, 1977)

�AðrÞ ¼ wAðrÞ�moleculeðrÞ: ð3Þ

In what follows, we shall call this the Hirshfeld atom. The

weight function used in the equation above is defined as

wAðrÞ ¼
�0

Aðr� rAÞP
B �

0
Bðr� rBÞ

: ð4Þ

Here �0
BðrÞ is the spherically averaged atomic density for the

isolated atom B centered at the origin. It is known that

Hirshfeld’s method is quite insensitive to the choice of refer-

ence density for calculating, say, atomic charges (deProft et al.,

2002). The thermally smeared Hirshfeld atom h�AiðrÞ is given

by the convolution of �A with a probability distribution

function PAðrÞ that describes the location of the atom A in

space,

h�Ai ¼ �A ? PA: ð5Þ

Here ? represents a convolution. It is these functions h�Ai for

the symmetry-unique atoms in the molecule which are used to

obtain the unit-cell density. Where no confusion can arise, we

shall also call them ‘Hirshfeld atoms’.

2.3. The model for the thermally averaged unit-cell density

The thermally smeared unit-cell density is given as a sum of

the thermally smeared atomic densities in the crystal:

h�celliðrÞ ¼
Pcell

C

h�CiðrÞ

¼
P

unique
atoms

a

P
fS;tg

n�1
a h�aiðS

T
ðr� tÞÞ: ð6Þ

In the second line, we have used the fact that the unique atoms

a are sufficient to generate all atoms C in the unit cell, when

acted on by all the crystal symmetry operators. The unique

atoms fag constitute an asymmetric unit which is a subset of

the atoms fAg in the molecule used in the QM calculation

described above. The factor na, a site-symmetry factor, is the

number of times the unique atom a is mapped onto itself (or a

lattice transformation of itself) by the crystal symmetry

operators fS; tg, and is present to avoid double counting.

2.4. Model for the structure factors

The X-ray structure-factor magnitudes Fc
j are calculated by

the following model:

Fc
j ¼ sXjð�; jFjjÞjFjj: ð7Þ
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Here jFjj is the magnitude of the complex structure factor Fj

(discussed below), s is an adjustable overall scale factor and

Xjð�; jFjjÞ accounts for extinction effects, and depends on an

empirically adjustable parameter � (Larson, 1970). Sometimes

multiple scale factors are used for different groups of reflec-

tions. This may occur when, for example, reflections are

measured with different detector settings or with different

crystals, as is often the case in protein crystals where beam

damage is common. To account for multiple scale factors, it is

only necessary to replace s in equation (7) by sgð jÞ, where gð jÞ is

the index of the group to which the reflection j belongs.

The complex structure factors Fj which appear in the model

are directly related to the thermally averaged electron density

in the unit cell by a Fourier transform,

Fj ¼
R
h�celliðrÞ expðiqj � rÞ dr: ð8Þ

Here qj is the scattering vector associated with the jth reflec-

tion, the difference between the elastically scattered and

incident X-ray wavevector

qj ¼ 2�D�hj ð9Þ

with D� being the reciprocal-cell matrix and h the vector of the

Miller indices.

Substituting equation (6) in equation (8), we can evaluate

the complex structure factors in terms of the Hirshfeld atoms:

Fj ¼
P

unique
atoms

a

P
fS;tg

n�1
a

R
h�aiðS

T
ðr� tÞÞ expðiqj � rÞ dr:

Now we use the substitution r0 ¼ ST
ðr� tÞ or r ¼ Sr0 þ t.

Since S is orthogonal, dr ¼ dr0, and we obtain

Fj ¼
P

unique
atoms

a

P
fS;tg

n�1
a

R
h�aiðr

0Þ exp½iqj � ðSr0 þ tÞ� dr0

¼
P

unique
atoms

a

P
fS;tg

n�1
a expðiqj � tÞhfaiðS

TqjÞ: ð10Þ

In the last line, we have used the definition for the Fourier

transform of a (thermally smeared) Hirshfeld atom a,

hfaiðqÞ ¼
R
h�aiðrÞ expðiq � rÞ dr

¼ ���aðqÞ expðiq � raÞ expð�qtUaq=2Þ: ð11Þ

The right-hand side is obtained from equation (5) for atom a.

The term expð�qTUaq=2Þ is the Fourier transform of prob-

ability distribution PaðrÞ, and the term ���aðqÞ is the Fourier

transform of the HA centered at the origin, i.e. the Fourier

synthesis of �aðrþ raÞ,

���aðqÞ ¼
R
�aðrþ raÞ expðiq � rÞ dr: ð12Þ

If the rigid-Hirshfeld-atom approximation is used (discussed

below), then ���aðqÞ may be regarded as a function of only the

atomic positions ra. Hence hfaiðqÞ, the form factor for the

thermally smeared HA, depends only on the atomic position

ra and the corresponding ADP Ua. The model has therefore

been expressed only in terms of the atomic positions and

ADPs (as well as the experimental scale factor s and the

extinction correction �).

It is worth pointing out that equation (11) expresses the

thermally smeared aspherical atomic scattering factor only in

terms of the ADPs of one atom, despite the fact that the

molecular density � from which �A is derived involves basis

functions centered on pairs of atoms. Hence the thermal

smearing scheme used here avoids less elegant partitioning

procedures that had to be used previously (Bruning & Feil,

1992; Jayatilaka & Grimwood, 2001).

2.5. Aspherical atomic scattering factors

Evaluation. The evaluation of the Fourier transform of the

HAs at the origin, equation (12), is central to the development

of this paper, and it is important to specify that we evaluate it

using numerical integration techniques developed by Becke

for use in quantum chemistry (Becke, 1988). Such methods are

straightforward and generally applicable. The atomic parti-

tioning of the molecular density used by Becke is unnecessary

since the Hirshfeld technique already generated atomic weight

functions wA which are suitable for this purpose. Otherwise,

the integration grids are constructed as a direct product of a

radial grid and an angular grid. The exact radial and angular

integration grids used are described later.

Atomic charges and moments. Setting q ¼ 0 in the equation

above gives the electronic charge of the Hirshfeld atom.

Dipole and higher moments of the Hirshfeld atom are also

straightforward to obtain using the same numerical integra-

tion techniques. Such charges and moments are interesting in

their own right (deProft et al., 2002; Krishtal et al., 2006) but

are here used to surround an isolated molecule to simulate a

crystalline environment.

Computational savings. The ab initio calculation of

aspherical atomic scattering factors is an expensive procedure.

Therefore, it is important to note some computational savings

that can be obtained with equation (10).

(i) For certain space groups, a subset of the symmetry

operators fSk; tkg may differ from one another only in the

translation (glide) part tk. For such a group of symmetry

operators, we can calculate once the common part

n�1
a hfaiðS

T
1 qjÞ and multiply it by the sum of the phasesP

k expðiqj � tkÞ.

(ii) For space groups with the inversion operator, a subset of

the symmetry operators fSk; tkg may differ from each other in

that Sk ¼ �S1; k> 1. In this case, ST
k qj ¼ �ST

1 qj and we can

calculate once the common part n�1
a hfaiðS

T
k qjÞ ¼ n�1

a hfaiðS
T
1 qjÞ

�

and multiply it by the sum of the phases
P

k>1 expðiqj � tkÞ.

[Note that the common part is just the complex conjugate of a

term which anyway must be evaluated as part of the contri-

bution expðiqj � t1Þn
�1
a hfaiðS

T
1 qjÞ.]

2.6. The rigid-Hirshfeld-atom approximation

The Hirshfeld weight function wa and the molecular density

� both depend explicitly on the coordinates of all the atoms in

the molecule chosen for the QM calculation. Hence, the HA
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�a also depends explicitly on the coordinates of all those

atoms.

For relatively small geometrical changes, it might be

expected that �a does not change significantly [this idea is due

to Debye (1930)]. Then the geometrical dependence of hfAiðqÞ

is controlled only by the phase factor expð iq � rAÞ in equation

(11). In the context of HAs, we shall call Debye’s approxi-

mation the rigid-Hirshfeld-atom approximation. Should this

approximation prove to be poor, we can always recalculate the

molecular density �, the Hirshfeld atom �a, and hence the

aspherical atomic scattering factors for atom a. Any physical

quantities such as atom positions and ADPs that have been

derived using this rigid-Hirshfeld-atom assumption can then

be redetermined with the recalculated aspherical atomic

scattering factors. Thus the rigid approximation can be

removed by an iterative process if necessary.

The importance of the rigid HA model lies in the fact that

the aspherical atomic scattering factors are much more effi-

ciently calculated using this approximation: a change in the

positional parameters of the atom a by �ra merely multiplies

the hfAiðqÞ by the phase factor expðiq ��raÞ. Use of this fact

avoids an expensive QM calculation for � and a computa-

tionally expensive numerical integration.

2.7. Refinement of model parameters

The least-squares refinement for the crystal structure

parameters is obtained by minimizing the agreement statistic

�2
¼

1

Nr � Np

X

j

ðFc
j � Fe

j Þ
2

	2
j

: ð13Þ

This statistic depends on the experimental structure factors

and errors, the number of reflections Nr, and the number of

parameters Np in the model. We have implemented a conju-

gate-gradient-minimization procedure as well as a standard

normal-equations approach to obtain the structural par-

ameters (Press et al., 1992) and we have found the latter to be

completely adequate for the cases examined here. The details

of these minimization techniques are well known in crystal-

lography (Coppens, 1997) (the derivative expressions required

to implement such methods can also be derived from the

preceding details). We shall not discuss those methods here,

except to note some key points of the implementation.

(i) Unlike other crystallographic programs, the minimiza-

tion is performed in Cartesian rather than fractional coordi-

nates. The reason for this is that the aspherical atomic

scattering factors are not tabulated but are most easily

calculated directly in the Cartesian frame used for the QM

calculation.

(ii) Because of the use of Cartesian coordinates, some of the

parameters may be redundant due to symmetry constraints. To

enforce symmetry, we use projection operators; and to elim-

inate symmetry-redundant coordinates we use the eigenvalue

filtering technique proposed by Diamond (1966), which has

the advantage that any combination of parameters which is

poorly defined is also removed from the refinement without

difficulty.

(iii) From a starting structure, a QM calculation is

performed and the rigid-Hirshfeld-atom approximation is

applied. The least-squares equations are solved to obtain a

provisional crystal structure. This structure may then be used

in another QM calculation and another structure refinement

to test whether the rigid approximation is acceptable.

Finally, the required QM calculations and the refinement

process have been coded in the program Tonto (Jayatilaka &

Grimwood, 2003) which is available free of charge under the

GNU-public license from the sourceforge repository (http://

sourceforge.net/projects/tonto).

3. The examples of benzene and urea

In this section, we describe the application of the method to

benzene and urea crystals.

3.1. Details of the experimental data and refinement

It is important to have an independent determination of the

geometrical parameters to which our refined crystal structure

parameters can be compared. For both benzene and urea,

neutron diffraction experiments provide this benchmark.

Neutron diffraction has been chosen because neutrons scatter

directly from the nuclei and in addition the scattering from

hydrogen nuclei is strong relative to the other nuclei, unlike

X-ray diffraction where the scattering from the H atoms is

weak.

For both benzene (Jeffrey et al., 1987) and urea (Swami-

nathan et al., 1984), 123 K neutron diffraction results including

ADPs of all atoms as well as reliable X-ray diffraction data

(Bürgi et al., 2002; Birkedal et al., 2004) are available. For

benzene, a multi-temperature analysis of an AgClO4–benzene

complex (McMullan et al., 1997) established the temperature

dependence of the D-atom ADPs and allowed scaling of these

neutron data – taking into account isotope effects – to the

temperature of the X-ray experiment, which was found to be

110 K (Bürgi et al., 2002). For urea, high-resolution synchro-

tron data (Birkedal et al., 2004) were measured at 123 K, the

temperature of the neutron experiment. Hence carefully

determined neutron ADPs are available, matching the

temperature of the X-ray experiments for both compounds.

The X-ray geometry provided the starting geometry for all

atoms including H for both compounds. It was attempted to

start the refinement process from the neutron geometries,

leading to the same result. In addition, for urea the starting

parameters for a few atoms were changed from the X-ray

result and the same refined result was again obtained. For

benzene, a cut-off of 4	 on F was used leading to 1766

reflections. For urea, all reflections were included as in the

original paper. It was not necessary to include an extinction

parameter in the models.

3.2. Details of the quantum-mechanical calculations

In the quantum-mechanical calculations, the cc-pVDZ and

cc-pVTZ Gaussian basis sets were used (Dunning, 1989) to
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expand the molecular orbitals. Both Hartree–Fock and BLYP

density functional calculations were used.

In performing the numerical integrations to obtain the

aspherical atomic scattering factors, a scheme similar to the

one developed by Becke was used (Becke, 1988). The radial

grid used was the ‘Log 3’ grid described by Mura & Knowles

(1996) with an equal spacing of radial points before the Log 3

remapping. 35 radial integration points were used for the H

atom with 5 extra points per n shell for the heavier atoms. We

used angular quadrature grids developed by Lebedev and

Laikov. The order of the angular grid was L ¼ 35 for non-H

atoms and L ¼ 29 for the H atoms, and in addition the angular

pruning scheme of Treutler & Ahlrichs (1995) was used to

make the angular grids smaller nearer the nucleus.

Some of the quantum-mechanical calculations described

below introduce a cluster of charges around the isolated

molecule to simulate the effect of the crystal environment.

These charges were calculated from the Hirshfeld atoms (x2.2)

and they were placed at the positions of the atoms in the

surrounding molecules. Only those molecules with an atom

within a radius of 5 Å of the central molecule were included.

In addition, atomic dipoles for the Hirshfeld atoms were

calculated, and two charges were placed at the positions of the

atoms (actually at a distance �0:001 a.u. from the atomic

position) in the surrounding molecules in such a way as to

simulate the atomic dipole moment of the Hirshfeld atom. The

Hartree–Fock or BLYP calculation was then repeated in the

presence of these charges, and new atomic charges were

calculated and propagated to the surrounding molecules. The

quantum-mechanical calculations were repeated, propagating

these charges, until the results ceased to change.

3.3. Comparison with multipole refinement and the effect of
basis set

Starting from the neutron diffraction crystal structures, the

Hirshfeld-atom refinement technique was applied by solving

the normal equations. All positions and ADPs were refined.
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Table 1
Figures of merit (R factors in %) for Hirshfeld-atom structure
refinements for different basis sets compared with those for the multipole
model.

Results for the multipole model were taken from the literature.

Multipole
Hirshfeld-atom refinement

model HF/cc-pVDZ HF/cc-pVTZ HF/cc-pVQZ

Benzene
RðFÞ 1.89 2.17 2.16 2.16
RwðFÞ 1.68 2.11 2.08 2.08
RðF2Þ 2.27 3.08 3.07 3.08
RwðF

2Þ 3.60 3.35 3.29 3.29
�2 – 1.64 1.59 1.59
S 1.04 1.28 1.26 1.26
Urea
RðFÞ 2.02 1.71 1.66 1.66
RwðFÞ 0.54 1.27 1.21 1.21
RðF2Þ 0.71 2.30 2.23 2.22
RwðF

2Þ 1.08 1.82 1.69 1.69
�2 – 9.40 8.51 8.53
S 1.17 3.07 2.92 2.92

Table 2
Figures of merit (R factors in %) for Hirshfeld-atom refinement for
benzene and urea with and without a surrounding cluster of point
charges.

HF/cc-pVTZ
HF/cc-pVTZ+�
(cluster of charges)

Benzene
R1ðFÞ 2.16 2.16
RwðFÞ 2.08 2.09
RðF2Þ 3.07 3.06
RwðF

2Þ 3.29 3.33
�2 1.59 1.60
GoF 1.26 1.27
Urea
R1ðFÞ 1.67 1.54
RwðFÞ 1.22 1.11
RðF2Þ 2.25 2.17
RwðF

2Þ 1.69 1.91
�2 8.35 7.14
GoF 2.89 2.67

Table 3
Figures of merit (R factors in %) for Hirshfeld-atom structure
refinements for the BLYP level of theory for benzene and urea; the
final column includes a surrounding cluster of charges.

Hirshfeld-atom refinement

BLYP/cc-
pVDZ

BLYP/cc-
pVTZ

BLYP/cc-
pVQZ

BLYP/cc-
pVQZ+�

Benzene
RðFÞ 2.16 2.15 2.15 2.15
RwðFÞ 2.09 2.07 2.07 2.08
RðF2Þ 3.17 3.44 3.46 3.45
RwðF

2Þ 3.35 3.53 3.55 3.61
�2 1.60 1.57 1.57 1.59
S 1.27 1.25 1.25 1.26
Urea
RðFÞ 1.57 1.53 1.54 1.40
RwðFÞ 1.10 1.08 1.10 0.88
RðF2Þ 1.96 1.87 1.88 1.67
RwðF

2Þ 1.46 1.45 1.47 1.07
�2 7.04 6.82 7.04 4.51
S 2.65 2.61 2.65 2.12

Table 4
Bond distances (Å) from neutron diffraction and Hartree–Fock
Hirshfeld-atom (HA) refinement for benzene and urea using BLYP
theory with surrounding cluster of point charges; differences � between
them multiplied by 1000.

Bond Neutron HA (cc-pVDZ) � HA (cc-pVTZ) �

Benzene
C1—C2 1.3943 (11) 1.3954 (4) 1.1 1.3957 (4) 1.4
C2—C3 1.3954 (11) 1.3958 (4) 0.4 1.3961 (4) 0.7
C1—C3a 1.3922 (11) 1.3944 (3) 2.2 1.3947 (3) 2.5
C1—H1 1.084 (2) 1.078 (5) �6.0 1.081 (5) �3.0
C2—H2 1.085 (2) 1.086 (5) 1.0 1.088 (5) 3.0
C3—H3 1.083 (2) 1.073 (5) �10.0 1.076 (5) �7.0
Urea
O1—C1 1.258 (1) 1.2557 (4) 0.0 1.2560 (4) 2.0
N1—H2 1.000 (2) 0.987 (5) �13.0 0.991 (5) �9.0
N1—C1 1.341 (1) 1.3412 (3) 0.0 1.3413 (2) 0.0
N1—H1 1.007 (2) 1.024 (3) 16.0 1.026 (3) 18.0



Table 1 gives the various figures of merit obtained using

Hirshfeld-atom refinement using Hartree–Fock calculations

with different basis sets. It can be seen that the Hirshfeld-atom

model yields slightly worse figures of merit than the multipole

model. This is perhaps not surprising since the multipole

refinement is based on adjusting a large number of charge-

density population parameters to the X-ray data, while the

Hirshfeld-atom refinement uses fixed electron-density frag-

ments derived from theory. Still, the fact that the Hirshfeld-

atom refinement almost reproduces the experimental result is

very encouraging, and it supports earlier findings where

invariom density fragments were used (Dittrich et al., 2007). A

more detailed comparison between this and the invariom

approach will be the topic of a subsequent study.

Table 1 shows that the double-� cc-pVTZ basis is already

sufficiently converged with respect to the figures of merit.

There is no improvement from the cc-pVQZ basis in terms of

R factor and goodness of fit.

3.4. The effect of the crystal environment

To simulate the effect of the crystal field, we have under-

taken calculations with surrounding point charges derived

from Hirshfeld partitioning of the molecular density, as
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Table 5
Anisotropic displacement parameters (ADPs) (/104 Å2) for benzene from neutron diffraction at 123 K and from D-atom ADPs scaled via multi-
temperature analysis (MTA), compared to Hirshfeld-atom refinement results using Hartree–Fock (HF) and BLYP theory for several basis sets.

Calculations which include a surrounding cluster of charges are indicated by postfixed +�.

Method Atom U11 U22 U33 U12 U13 U23

Neutron C1 232 (3) 200 (3) 262 (3) 17 (3) �13 (3) �12 (3)
MTA 211 186 238 13 �7 �9
HF/cc-pVDZ 216.9 (8) 194.2 (7) 247.7 (8) 13.7 (7) �9.0 (8) �8.7 (7)
HF/cc-pVTZ 217.0 (8) 194.0 (7) 247.9 (8) 14.3 (7) �7.3 (8) �8.0 (7)
HF/cc-pVTZ+� 217.2 (8) 194.0 (7) 248.1 (8) 14.4 (7) �7.3 (8) �8.0 (7)
BLYP/cc-pVTZ 214.6 (8) 192.5 (7) 245.9 (8) 13.0 (7) �12.0 (8) �9.8 (7)
BLYP/cc-pVTZ+� 212.9 (8) 190.6 (7) 244.0 (8) 13.6 (7) �10.0 (8) �9.0 (7)

Neutron C2 218 (3) 255 (3) 242 (3) 14 (3) 33 (3) �16 (3)
MTA 195 236 222 13 27 �17
HF/cc-pVDZ 199.5 (8) 245.5 (8) 231.4 (8) 13.8 (7) 26.3 (8) �16.8 (8)
HF/cc-pVTZ 200.0 (8) 244.7 (9) 231.9 (8) 14.5 (7) 28.1 (8) �15.9 (8)
HF/cc-pVTZ+� 200.1 (8) 244.9 (9) 232.0 (8) 14.7 (7) 28.5 (8) �15.9 (8)
BLYP/cc-pVTZ 196.5 (8) 245.2 (9) 228.8 (8) 12.7 (7) 24.1 (8) �18.4 (8)
BLYP/cc-pVTZ+� 195.3 (8) 242.4 (9) 227.5 (8) 13.3 (7) 26.0 (8) �17.8 (8)

Neutron C3 230 (3) 237 (3) 233 (3) �22 (3) 17 (3) 19 (3)
MTA 206 215 217 �17 11 18
HF/cc-pVDZ 211.3 (8) 225.6 (8) 225.9 (8) �17.6 (7) 10.1 (8) 19.4 (8)
HF/cc-pVTZ 211.5 (8) 225.3 (8) 226.3 (8) �16.7 (7) 11.6 (8) 19.6 (8)
HF/cc-pVTZ+� 211.7 (8) 225.3 (8) 226.4 (8) �16.7 (7) 11.8 (8) 19.8 (8)
BLYP/cc-pVTZ 209.3 (8) 224.6 (8) 223.3 (8) �19.2 (7) 7.6 (8) 19.1 (8)
BLYP/cc-pVTZ+� 208.0 (8) 222.1 (8) 221.7 (8) �18.1 (7) 9.2 (8) 19.2 (8)

Neutron H1 472 (5) 262 (3) 519 (6) 83 (3) 2 (5) �2 (4)
MTA 478 260 533 85 18 8
HF/cc-pVDZ 490 (30) 400 (30) 500 (30) 10 (20) 0 (20) 30 (20)
HF/cc-pVTZ 530 (30) 390 (30) 520 (30) 20 (20) 10 (20) 40 (20)
HF/cc-pVTZ+� 530 (30) 380 (30) 520 (30) 30 (20) 0 (20) 40 (20)
BLYP/cc-pVTZ 480 (30) 330 (20) 520 (30) 60 (20) �10 (20) 30 (20)
BLYP/cc-pVTZ+� 490 (30) 320 (20) 490 (30) 60 (20) 0 (20) 40 (20)

Neutron H2 400 (5) 469 (5) 449 (5) 69 (4) 168 (5) �32 (5)
MTA 403 489 458 81 177 �34
HF/cc-pVDZ 450 (30) 450 (30) 560 (30) 60 (20) 140 (30) 20 (30)
HF/cc-pVTZ 470 (30) 470 (30) 580 (30) 70 (20) 150 (30) 20 (30)
HF/cc-pVTZ+� 460 (30) 470 (30) 570 (30) 80 (20) 160 (30) 20 (30)
BLYP/cc-pVTZ 410 (30) 460 (30) 520 (30) 70 (20) 160 (20) 10 (20)
BLYP/cc-pVTZ+� 400 (30) 460 (30) 500 (30) 80 (20) 160 (20) 0 (20)

Neutron H3 450 (5) 400 (5) 428 (5) �63 (4) 91 (5) 124 (4)
MTA 471 398 433 �58 104 125
HF/cc-pVDZ 470 (30) 460 (30) 500 (30) 30 (20) 10 (30) 20 (30)
HF/cc-pVTZ 500 (30) 480 (30) 520 (30) 20 (20) 20 (30) 40 (30)
HF/cc-pVTZ+� 500 (30) 470 (30) 510 (30) 10 (20) 20 (30) 40 (30)
BLYP/cc-pVTZ 470 (30) 430 (30) 460 (30) 0 (20) 60 (20) 80 (20)
BLYP/cc-pVTZ+� 490 (30) 410 (30) 470 (30) 0 (20) 50 (20) 90 (20)



described above. The simulation of such effects by point

charges and dipoles might be insufficient, e.g. for situations

with strong hydrogen bonding. A more exhaustive treatment

will be the subject of future work. The radius of the

surrounding cluster used here was 5 Å. Table 2 shows the

agreement statistics. For urea, for the cluster-of-charges

model, the agreement is systematically better than when

isolated molecules are used. However, for benzene where

there are no strong intermolecular interactions apart from the

C—H� � �� interaction, there is no obvious improvement.

3.5. The effect of electron correlation

Table 3 shows that including electron correlation by

performing the calculations on the BLYP level of theory does

improve R factors and can also still be detected in the good-

ness of fit and �2 for hydrogen-bonded urea, while for benzene

the improvements are insignificant. We can also see that

changing the basis set does not improve the results much after

cc-pVTZ. Hence, including a surrounding cluster of charges is

more important than using a large basis set. The best possible

fit is achieved when combining the BLYP level of theory with a

surrounding cluster of charges.

3.6. Bond lengths obtained

Table 4 lists the geometries for benzene and urea together

with the results of the Hirshfeld-atom refinement. In benzene,

there is an inversion center in the mid-point of each ring,

resulting in three unique C atoms and three unique H atoms.

For urea, the atoms sit on special positions and the whole

molecule can be generated by the asymmetric unit consisting

of only half the number of atoms.

From Table 4, we see that non-hydrogen-bond lengths are

within 0.002 Å of the neutron diffraction results and

hydrogen-bond lengths are within 0.01 Å except for one which

is within 0.02 Å. We do not see a pronounced effect of the

basis set on the geometry. The geometry from neutron and

X-ray diffraction agrees well also for the H atoms. The cc-

pVDZ basis seems already sufficient to model the most

dominant aspherical features of the electron density. An

influence of larger basis sets might be expected when even

higher data resolutions were available. One can conclude that

the cc-pVDZ basis already provides an improved density

description over the multipole model and is sufficient for

investigating the geometry of larger molecules when basis-set

size might become a limiting factor.
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Table 6
Anisotropic displacement parameters (ADPs) (/104 Å2) for urea from neutron diffraction (at 123 K) scaled to fit the X-ray data, compared to Hirshfeld-
atom refinement results using Hartree–Fock (HF) and BLYP theories for several basis sets.

Calculations which include a surrounding cluster of charges are indicated by postfixed +�.

Method Atom U11 U22 U33 U12 U13 U23

Neutron O1 197 (6) 197 (6) 63 (4) 17 (5) 0 0
HF/cc-pVDZ 192.7 (7) 192.7 (7) 66.3 (6) 13 (1) 0.0 (0) 0.0 (0)
HF/cc-pVTZ 194.1 (7) 194.1 (7) 66.1 (6) 13 (1) 0.0 (0) 0.0 (0)
HF/cc-pVTZ+� 193.8 (6) 193.8 (6) 66.6 (5) 15 (1) 0.0 (0) 0.0 (0)
BLYP/cc-pVTZ 193.9 (6) 193.9 (6) 64.6 (5) 16 (1) 0.0 (0) 0.0 (0)
BLYP/cc-pVTZ+� 193.5 (5) 193.5 (5) 65.2 (4) 17.4 (8) 0.0 (0) 0.0 (0)

Neutron N1 286 (4) 286 (4) 95 (2) �147 (2) 2 (3) 2 (3)
HF/cc-pVDZ 283.6 (9) 283.6 (9) 97.0 (6) �145 (1) 1.1 (5) 1.1 (5)
HF/cc-pVTZ 285.9 (8) 285.9 (8) 96.7 (6) �147 (1) 1.2 (5) 1.2 (5)
HF/cc-pVTZ+� 286.3 (7) 286.3 (7) 95.2 (5) �148 (1) 0.7 (5) 0.7 (5)
BLYP/cc-pVTZ 288.3 (8) 288.3 (8) 94.6 (4) �149 (1) 1.1 (5) 1.1 (5)
BLYP/cc-pVTZ+� 288.3 (6) 288.3 (6) 93.5 (4) �150.4 (8) 0.5 (4) 0.5 (4)

Neutron C1 147 (5) 147 (5) 65 (3) 1 (4) 0 0
HF/cc-pVDZ 147.9 (7) 147.9 (7) 65.6 (7) �3 (1) 0.0 (0) 0.0 (0)
HF/cc-pVTZ 148.9 (7) 148.9 (7) 65.3 (7) �4 (1) 0.0 (0) 0.0 (0)
HF/cc-pVTZ+� 148.6 (6) 148.6 (6) 65.8 (6) �5 (1) 0.0 (0) 0.0 (0)
BLYP/cc-pVTZ 146.0 (6) 146.0 (6) 65.7 (6) 1 (1) 0.0 (0) 0.0 (0)
BLYP/cc-pVTZ+� 145.8 (5) 145.8 (5) 66.1 (5) 0.7 (8) 0.0 (0) 0.0 (0)

Neutron H1 440 (11) 440 (11) 216 (7) �222 (8) �31 (9) �31 (9)
HF/cc-pVDZ 740 (40) 740 (40) 200 (30) �420 (40) �130 (20) �130 (20)
HF/cc-pVTZ 750 (30) 750 (30) 230 (30) �410 (40) �130 (20) �130 (20)
HF/cc-pVTZ+� 620 (30) 620 (30) 260 (30) �360 (30) �120 (20) �120 (20)
BLYP/cc-pVTZ 660 (30) 660 (30) 140 (30) �400 (30) 0 (20) 0 (20)
BLYP/cc-pVTZ+� 550 (20) 550 (20) 170 (20) �350 (30) 0 (10) 0 (10)

Neutron H2 430 (10) 430 (10) 140 (6) �158 (8) 19 (8) 19 (8)
HF/cc-pVDZ 520 (20) 520 (20) 280 (30) �10 (40) 30 (20) 30 (20)
HF/cc-pVTZ 540 (20) 540 (20) 290 (30) �90 (40) 20 (20) 20 (20)
HF/cc-pVTZ+� 530 (20) 530 (20) 190 (20) �120 (40) �20 (20) �20 (20)
BLYP/cc-pVTZ 450 (20) 450 (20) 360 (30) �180 (30) �20 (20) �20 (20)
BLYP/cc-pVTZ+� 450 (20) 450 (20) 260 (20) �190 (30) �20 (10) �20 (10)



3.7. Anisotropic displacement parameters (ADPs)

A result of this work which is of special interest to the

crystallographic community is that H-atom ADPs can be

directly refined from the X-ray data (see below). So far, the

consensus among crystallographers is that H-atom ADPs

cannot be obtained from single-crystal X-ray diffraction data

(Hirshfeld, 1976). This is undoubtedly the case when using the

independent-atom model and also when we determine the

electron density in a multipole refinement, as electron density

and thermal motion are convoluted and therefore intimately

related. However, in cases when the electron-density distri-

bution is known a priori (Dittrich et al., 2005), like the

approach taken in this paper where the electron density is

calculated from high-level quantum chemistry, the thermal

motion of H atoms becomes accessible by experiment, as the

contamination of ADPs due to bonding electron density that

occurs when using the independent-atom model (Hummel,

Raselli & Bürgi, 1990) is expected to be absent. Earlier

preliminary results using the multipole model did not justify

early optimism and the ADPs from the invariom database

(Dittrich et al., 2006) still showed systematic differences,

mostly with atoms that were involved in hydrogen bonding, i.e.

the surrounding molecules. The conclusion at the time was

that differences in the refined ADPs were due to the influence

of hydrogen bonding or, more generally, the surrounding

molecules. A possible solution to this problem that is also

applicable to larger molecules where a SCF calculation can be

afforded is to include the charges of the cluster of molecules

surrounding a molecule.

Now to the results of this work. Table 5 lists the neutron

ADPs for benzene together with the results of a multi-

temperature study (Bürgi et al., 2002) that provide reference

values for comparison. The Hirshfeld-atom refinement results

were calculated on the Hartree–Fock level of theory for two

basis sets and also included cluster charges. As expected,

differences in the C-atom ADPs are rather small for benzene.

Interestingly, the C-atom ADPs for the Hirshfeld-atom fit lie

in between the neutron and the multi-temperature results.

While the ADPs of the C atoms do not change much with

the size of the basis set, H-atom ADPs do show a more

pronounced basis-set dependence. While H1 and H2 atoms

are reduced with increasing basis-set size, the H3 atom shows

the opposite trend. We suppose that a more extended basis set

with diffuse electron density might correlate with the atomic

displacement parameters. A very interesting result is that

H-atom ADPs improve when the BLYP level of theory is

employed and show the closest agreement with the multi-

temperature results. When reflecting on the small changes of

the R factor reported earlier, these quite considerable

improvements in the ADPs that leave the figures of merit

almost unchanged lead us to the conclusion that the R factor is

rather too insensitive to highlight improvements at this level

of detail.

Table 6 lists the neutron ADPs for urea together with the

results of the Hirshfeld-atom refinement, the results from

neutron diffraction and the result where cluster charges were

included. For urea, ADPs again improve substantially when

using a cluster of point charges to surround the molecule and

when using the BLYP level of theory to model electron

correlation. To highlight what contribution is due to electron

correlation and what due to the cluster charges, we have also

added the results for BLYP/cc-pVTZ, showing that the former

dominates. However, significant differences remain.

The possibility that these differences in the ADPs are due to

an inadequate electron-density model (one which does not

include the perturbing effects of nearby molecules, or which

does not include electron correlation effects) can most likely

be ruled out. However, two caveats should be noted. (i) The

use of point charges to simulate the crystal field does not allow

for electron exchange effects, and (ii) the use of BLYP theory

to treat electron correlation effects is not ideal for the inter-

molecular hydrogen bonds in urea.

The differences in the ADPs may also be due to systematic

error in either the experimental X-ray or neutron data. Bles-

sing (1995) has discussed possible reasons for such differences.
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Figure 3
Differences between ADPs refined from neutron minus Hirshfeld-atom
refinement as displayed with the program peanut (Hummel, Hauser &
Bürgi, 1990) for urea showing only the asymmetric unit. A scale of 6.15
for the RMSD surfaces has been used. (a) shows the difference neutron�
HF/cc-pVTZ, (b) shows the difference neutron � HF/cc-pVTZ+� and
(c) shows neutron � BLYP/cc-pVTZ+�.

Figure 2
Differences between ADPs refined from neutron minus Hirshfeld-atom
refinement as displayed with the program peanut (Hummel, Hauser &
Bürgi, 1990) for benzene (only the asymmetric unit is shown). A scale of
6.15 for the RMSD surfaces has been used. (a) shows the difference
neutron�HF/cc-pVTZ+�, (b) shows the difference neutron� BLYP/cc-
pVTZ+�. A reduction of the differences for the BLYP (b) compared to
the HF level of theory (a) can be seen.



One likely systematic error that might still be contained in the

X-ray data is thermal diffuse scattering. An analysis of low-

temperature or multi-temperature data might be helpful to

test this possibility, as a better agreement between X-ray and

neutron ADP results has been reported at temperatures

around 20 K (Iversen et al., 1996). It cannot be ruled out that

the neutron data are also affected by extinction and absorp-

tion problems, which will be smaller or absent for the X-ray

data due to crystal size.

Differences in ADPs are easier to analyse and become more

obvious when visualized. Figs. 2 and 3 show differences

between neutron and Hirshfeld-atom refinement results in

terms of root mean square displacements (RMSDs) using the

program peanut (Hummel, Hauser & Bürgi, 1990) for benzene

and urea. The first observation that can be made is that, for

benzene, heavy-atom ADPs from Hirshfeld-atom refinement

are systematically smaller than for the neutron data, although

differences are small. For urea, no obvious contamination of

bonding electron density occurs for the non-H atoms as

differences are small and randomly distributed. For benzene,

the difference calculated from the neutron ADPs minus their

Hirshfeld-atom refinement counterparts is reduced when the

BLYP method is used (Fig. 2b) compared to the HF result (Fig.

2a), especially for the H atoms, although H-atom ADPs are

still overestimated in the Hirshfeld-atom refinement. For urea,

the isolated-molecule scattering factors are expected to result

in inferior H-atom ADPs, as the effects of hydrogen bonding

are not included in the model density. That is supported by

comparison with the neutron result using the basis HF/cc-

pVTZ (Fig. 3a). The agreement is improved by including the

cluster charges for the same basis (Fig. 3b) and is best for the

combination BLYP/cc-pVTZ and cluster charges (Fig. 3c).

3.8. Contribution of the H-atom ADPs to the figures of merit

To establish whether the experimental data are accurate

enough to determine the H-atom ADPs, we have calculated

and compared two sets of structure factors: those with the

H-atom ADPs fixed, and those with the H atoms refined. The

agreement statistics show that the difference is observable in

the �2 agreement statistic (1.79 with fixed H-atom ADPs, 1.63

for adjusted ones), however the effect is only of the order of

0.05% in the R factor.

3.9. Computational time of the refinement and the use of the
conjugate gradient method

Most of the computational time using the approach was

taken by (i) the initial SCF required to obtain the molecular

density, and (ii) the time taken to calculate the aspherical

scattering factors. After the latter are available, of the order of

ten iterations are required to obtain the refined structure using

the normal-equations method, and this part of the calculation

proceeds in much less than one second on a normal personal

computer.

We have also implemented a refinement procedure based

on the Broyden–Fletcher–Goldfarb–Shanno (BFGS) conju-

gate-gradient minimization of the least-squares function. The

results obtained were the same as those obtained from least-

squares minimization, except that more steps were required to

obtain the refined structure. It is recommended to use the

normal-equation method for structure refinement with

Hirshfeld atoms.

4. Conclusions

A new approach to crystal structure refinement has been

described. Specifically, aspherical atomic density functions

(ADFs) are obtained by partitioning a quantum-mechanical

electron density using Hirshfeld’s method. The positions of

these ADFs, and their atomic displacement parameters, are

adjusted to fit the measured X-ray diffraction data by mini-

mizing the least-squares error. The method has been

successfully applied to the case of benzene and urea. The

following conclusions may be drawn.

(i) The refined structure obtained from the Hirshfeld-atom

method has figures of merit close to those obtained from a

multipole refinement with very many fewer adjustable par-

ameters.

(ii) The structure factors calculated using the Hirshfeld-

atom method are better than those obtained by partitioning

the ADPs between two atomic centers, as used previously. The

Hirshfeld-atom method is more elegant and is recommended

for structure-factor calculation.

(iii) The refined geometrical parameters, even those for H

atoms, are very close to those observed from neutron

diffraction experiments: non-hydrogen bond lengths are

within 0.002 Å while hydrogen bond lengths are mostly within

0.01 Å.

(iv) The ADPs for heavy atoms are very close to those

obtained from neutron experiments, while those for H atoms

are larger by about 20% compared to corresponding neutron

diffraction ADPs.

(v) Calculations that include electron correlation and that

simulate the effect of the crystal environment using point

charges lead to an improvement in the H-atom ADPs relative

to the neutron diffraction results. The best agreement can be

achieved with the BLYP level of theory in combination with

cluster charges.

(vi) The time for the refinement procedure is dominated by

the quantum-mechanical calculation time and also the time to

calculate the aspherical atomic scattering factors. A negligible

time is required for the actual structure refinement.
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